organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Adriana Garcia-Sanchez,^a Itzia I. Padilla-Martínez,^a Francisco J. Martínez-Martínez,^b Herbert Höpfl^c and Efrén V. García-Báez^a*

^aUnidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Avenida Acueducto s/n, Barrio La Laguna Ticomán, México, DF 07340, Mexico, ^bDepartamento de Química, Universidad Autónoma de Colima, Mexico, and ^cCentro de Investigaciónes Químicas, Universidad Autónoma del Estado de Morelos, Cuernava Morelos, Mexico

Correspondence e-mail: vgarcia@acei.upibi.ipn.mx

Key indicators

Single-crystal X-ray study T = 100 KMean σ (C–C) = 0.02 Å R factor = 0.026 wR factor = 0.067 Data-to-parameter ratio = 17.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

1,1,2,2-Tetrachloro-1,2-diphenylethane

The title compound, $C_{14}H_{10}Cl_4$, possesses C_i symmetry and crystallizes with one half-molecule in the asymmetric unit. The two phenyl rings are antiperiplanar and inclined to one another by 180° by symmetry. The central C-C bond distance and the Cl-C-Cl bond angle [1.5887 (18) Å and 106.02 (7)°, respectively] are significantly different from ideal sp^3 values. In the crystal, a supramolecular structure is achieved by soft parallel-displaced π - π stacking and C-H··· π intermolecular interactions.

Comment

Halogenated hydrocarbons are known for their toxic effects, and some of these compounds are suspected of having human carcinogenic activity (Cornia *et al.*, 1993). The title compound, (I), and its derivatives constitute an important class of halogenated hydrocarbons whose internal rotation processes and conformational preferences have been studied by NMR and X-ray methods (Antolini *et al.*, 1995). In this context the crystal structure of (I) is reported here.

The molecular conformation and dimensions of (I), illustrated in Fig. 1, are very similar to those reported for several p-substituted diaryl derivatives of 1,1,2,2-tetrachloroethane (Antolini *et al.*, 1994). Selected interatomic distances and bond and torsion angles are listed in Table 1.

The asymmetric unit of (I) contains one half-molecule, with the other half generated by a center of inversion, which lies at the midpoint of the $C1-C1^i$ bond [symmetry code: (i) -x + 1, -y, -z + 1]. Thereby, perfect staggering around the $C1-C1^i$ bond is a consequence, with the aromatic rings in an antiperiplanar position $[C2-C1-C1^i-C2^i = 180^\circ]$. The same molecular conformation and symmetry requirements ($\overline{1}$) were observed in other 4,4-(1,1,2,2-tetrachloroethane-1,2-diyl)dichlorobenzenes (Hovmöller *et al.*, 1978; Antolini *et al*, 1994). Good agreement of the corresponding values of bond Received 1 February 2005 Accepted 8 February 2005 Online 19 February 2005

Figure 1

The molecular structure of compound (I), showing displacement ellipsoids drawn at the 30% probability level [Symmetry code: (a) -x + 1, -y, -z + 1.]

distances and angles with compound (I) is found. Nevertheless, some of these geometric parameters are significantly different from those reported for many DDT-type derivatives of known structures and from mean values retrieved from the Cambridge Structural Database (Version of April 2004; Allen, 2002).

The C1-C1ⁱ distance of 1.5887 (18) Å is significantly longer than the mean value of 1.513 Å for a C-C single bond (Allen *et al.*, 1987). Such bond lengthening is accompanied by a substantial decrease of the bond angle [Cl1-C1-Cl2 = 106.02 (7)°] in comparison with the ideal sp^3 angle of 109.5 Å. In contrast, the Cl1-C1 and Cl2-C1 bond distances, of 1.7969 (13) and 1.7882 (14) Å, respectively, are similar to the value of 1.792 Å found in DDT-type derivatives.

The supramolecular structure of (I), shown in Fig. 2, is achieved by parallel displaced π -stacking interactions [symmetry code: -x, -y, 1-z] between the aromatic rings, with interplanar and intercentroid distances of 3.374 and 3.8916 (10) Å, respectively (Singh & Thornton, 1990). Tshaped (Umezawa *et al.*, 1998) C4–H4···Phⁱⁱⁱ [symmetry code: (iii) x, $\frac{1}{2} - y$, $-\frac{1}{2} + z$] intermolecular interactions of 2.8267 Å [C4···Ph = 3.6971 (16) Å and C4–H4···Ph = 152.74°] also contribute to the crystal packing.

Experimental

 α, α, α -Trichlorotoluene (1.02 ml, 7.15 mmol) and triethylamine (3.8 ml, 27.24 mmol) were heated at 393 K in a sealed ampoule for 24 h. The resulting mixture was dissolved in CHCl₃ (50 ml) and extracted with three portions of distilled water (20 ml). After drying with Na₂SO₄ and concentrating, the organic phase was chromato-

Figure 2

The crystal packing of compound (I). Parallel displaced π - π stacking and C4-H4... π^{iii} intermolecular interactions are shown as dotted lines. [Symmetry codes: (ii) -x, -y, 1 - z; (iii) x, $\frac{1}{2} - y$, $-\frac{1}{2} + z$.]

graphed on silica gel to obtain 0.914 g (80% yield) of (I) as a white solid. Crystals suitable for X-ray analysis were obtained by crystallization from a chloroform solution. ¹H NMR (CDCl₃): δ 7.44 (*br*, 2H, H_p), 7.35 (*t*, 2H, H_m), 7.21 (*br*, 2H, H_o); ¹³C NMR (CDCl₃): δ 136.4 (C_i), 131.0 (C_p), 130.0 (C_m), 126.87 (C_o), 96.8 (CCl₂).

Crystal data

$C_{14}H_{10}Cl_4$	$D_x = 1.649 \text{ Mg m}^{-3}$
$M_r = 320.02$	Mo $K\alpha$ radiation
Aonoclinic, $P2_1/c$	Cell parameters from 600
$a = 8.5925 (10) \text{ Å}_{2}$	reflections
o = 10.6129 (13) Å	$\theta = 20-25^{\circ}$
e = 7.7558 (9) Å	$\mu = 0.89 \text{ mm}^{-1}$
$B = 114.315 \ (2)^{\circ}$	T = 100 (2) K
$V = 644.52 (13) \text{ Å}^3$	Block, colorless
Z = 2	$0.52 \times 0.49 \times 0.42 \text{ mm}$

 $\begin{aligned} R_{\rm int} &= 0.021\\ \theta_{\rm max} &= 27.6^\circ \end{aligned}$

 $h = -10 \rightarrow 10$

 $k = -13 \rightarrow 13$

 $l = -10 \rightarrow 10$

Data collection

Bruker SMART area-detector
diffractometer
φ and ω scans
6982 measured reflections
1461 independent reflections
1451 reflections with $I > 2\sigma(I)$
Refinement

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0354P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.026$	+ 0.3344P]
$wR(F^2) = 0.067$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.12	$(\Delta/\sigma)_{\rm max} = 0.001$
1461 reflections	$\Delta \rho_{\rm max} = 0.41 \text{ e } \text{\AA}^{-3}$
32 parameters	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

	······································	selected geometric parameters (A, °).
--	--	---------------------------------------

Cl1-C1	1.7969 (13)	$\begin{array}{c} C1 - C2 \\ C1 - C1^i \end{array}$	1.523 (2)
Cl2-C1	1.7882 (14)		1.5887 (18)
Cl1-Cl-Cl2 $Cl1-Cl-C2$	106.02 (7)	Cl2-C1-C2	110.37 (9)
	110.43 (9)	$Cl2-C1-C1^{i}$	107.69 (9)
Cl1-Cl-Cl ⁴ Symmetry code: (i) –	$\frac{107.00(9)}{x+1, -y, -z+1}$		

All the H atoms could be located in difference Fourier maps, and were refined as riding atoms, with C-H = 0.95 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 2000); program(s) used to solve

structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2000); software used to prepare material for publication: *SHELXL97* and *WinGX2003* (Farrugia, 1999).

This work was supported by CGPI–IPN (Coordinación General de Posgrado e Investigación del Instituto Politécnico Nacional).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Allen, F. A., Kennard, O. J., Watson, D. G., Brammer, L., Orpen, G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

- Antolini, L., Folli, U., Iarossi, D., Mucci, A., Sbardellati, S. & Taddei, F. (1995). J. Chem. Soc. Perkin Trans. 2, pp. 1007–1015.
- Antolini, L., Folli, U., Mucci, A., Sbardellati, S. & Taddei, F. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 1107–1114.
- Bruker (2000). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Winsconsin, USA.
- Cornia, A., Folli, U., Sbardellati, S. & Taddei, F. (1993). J. Chem. Soc. Perkin Trans. 2, pp. 1847–1853.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Hovmöller, S., Smith, G. & Kennard, C. H. L. (1978). Acta Cryst. B34, 3016–3021.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Singh, J. & Thornton, J. M. (1990). J. Mol. Biol. 211, 595-615.
- Umezawa, Y., Tsuboyama, S., Honda, K., Uzawa, J. & Nishio, M. (1998). Bull. Chem. Soc. Jpn, **71**, 1207–1213.